
PHYLAX: Snapshot-based Profiling of
Real-Time Embedded Devices via JTAG Interface

Charalambos Konstantinou∗, Eduardo Chielle†, Michail Maniatakos†
∗Electrical and Computer Engineering, Tandon School of Engineering, New York University

†Electrical and Computer Engineering, New York University Abu Dhabi
E-mail: {ckonstantinou, eduardo.chielle, michail.maniatakos}@nyu.edu

Abstract—Real-time embedded systems play a significant
role in the functionality of critical infrastructure. Legacy
microprocessor-based embedded systems, however, have not been
developed with security in mind. Applying traditional security
mechanisms in such systems is challenging due to computing
constraints and/or real-time requirements. Their typical 20-30
year lifespan further exacerbates the problem. In this work, we
propose PHYLAX, a plug-and-play solution to detect intrusions
in already installed embedded devices. PHYLAX is an external
monitoring tool which does not require code instrumentation.
Also, our tool adapts and prioritizes intrusion detection based
on the requirements of the underlying infrastructure (power
grid, chemical factory, etc.) as well as the computing capabilities
of the target embedded system (CPU model, memory size,
etc.). PHYLAX can be employed on any legacy device which
incorporates a JTAG interface. As a case study, we present the
inclusion of PHYLAX on a power grid recloser controller.

I. INTRODUCTION

Over the past fifty years, Industrial Control Systems (ICS)
have been entrusted to ensure safe and reliable operation of
critical physical processes. Even though ICS devices and pro-
tocols have many inherent vulnerabilities, since security was
not a concern during their standardization, the fact that ICS
technology was hosted on dedicated infrastructure rendered
it immune to cyber threats. This has changed in the last
twenty years, as cost pressures are dictating convergence of
conventional Information Technologies (IT) with ICS [1].
Installed devices “smart” but not secure: A quick search
using SHODAN, browsing through the literature and the
vendor brochures reveals that the IT convergence with ICS
is funneled through the inclusion of microprocessor-based
embedded systems. Most of these devices were developed
decades ago without security in mind and also designed with
a lifespan of 20-30 years. Thus, insecure embedded devices
will remain a major threat for many years.
Replacement impractical: Even if we assume that the newly
installed embedded devices are well-secured, it is impractical
and resource-intensive to replace those already in place. In
addition to the lifetime of these devices, an industry mantra
still plagues the mindset of some executives: “Run the equip-
ment until it dies” [2]. Scrapping legacy systems and replacing
them with modern ones may involve risks due to customized
specifications, unpredictable costs, etc.
Software upgrade impractical: An interim solution could
potentially be a software upgrade of existing devices to include
security features [3]. This solution may be more challenging

than replacing the devices: First, vendor collaboration is re-
quired. The vendor may be out of business, the product may be
discontinued or the vendor may refuse to collaborate. Second,
the device could be incapable of improvement, due to limited
computational capabilities, insufficient free space, etc. Third,
even if an improved firmware is developed, the utility needs to
have proper updating mechanisms. For third parties this is also
an extremely challenging task as source code is not typically
available. Also, the performance overhead is often too large
to be deployed in real-time applications [4].

Hardware-assisted approaches demonstrate significant per-
formance improvement without the requirement of code instru-
mentation. Nevertheless, such schemes require hardware logic
to be integrated in the processor [5]. Various schemes have
been proposed utilizing debug interfaces [6]. Such approaches,
however, rely on special debug and trace modules provided
by chip-specific and modern debug architectures not typically
available in legacy devices [7].

Given all the above, an interim solution which addresses the
security concerns of critical infrastructure as they exist today
is needed. Hence, in this work, we propose PHYLAX1, an
external monitoring tool with the following key features:

• can be installed on any JTAG-enabled device,
• prioritizes and adapts to any control process,
• does not require instrumentation or vendor collaboration.

PHYLAX is a ready-to-deploy JTAG-based monitoring and
detection module which can be attached to the host processor
of the embedded device. The module inspects memory and
registers, and inserts breakpoints to detect abnormal behavior
(Section II). In order to enable authorized access to JTAG port
and protect JTAG data, various schemes have been introduced
[8]. The proposed work can be used in conjunction with
all these techniques. We demonstrate PHYLAX’s capabilities
on a power grid case study in Section III. It should be
emphasized, and will be further discussed in Section IV,
that the massive deployment of PHYLAX to all embedded
devices of the infrastructure is equally unrealistic. Instead,
potential applications include selective deployment to very
critical nodes, and using PHYLAX as a forensics tool for rapid
diagnosis and intruder tracing after a cyberattack.

1Spawning from ancient Greek, the term phylax (φύλαξ) is commonly
translated as “guard” or “watcher”.



Fig. 1: PHYLAX architecture.

II. PHYLAX METHODOLOGY

A. Prerequisites

JTAG-enabled device: IEEE 1149.1, known as JTAG, is the
industry standard for the test access port and the boundary
scan architecture. Besides testing purposes, JTAG is widely
used for in-circuit debugging and firmware programming.
Specific debugging features: Debug features are configurable
by chip designers and can be classified into invasive and non-
invasive. Invasive features require to halt the processor or
change significantly the execution flow. Non-invasive features
have none or very little effect on the program flow. Among
the available features, PHYLAX relies on those that exist in
most debugging designs, which are a) internal register access
(invasive), b) memory access (non-invasive), and c) placement
of hardware breakpoints (non-invasive).

The selection of JTAG as the extraction medium and the
subset of debugging features required were driven by the
need to make PHYLAX widely applicable to legacy devices.
Finally, we assume that the PHYLAX-hosting platform has
typical computational capabilities (e.g., a Raspberry PI).

B. Threat Model

PHYLAX’s design focuses on detecting firmware modifica-
tions running on bare metal hardware. This is often the case for
many real-time embedded devices with time-critical latency
requirements such as those required in ICS. Such systems
boot directly monolithic, single-purpose software, and the
firmware tasks are executed in a single-threaded and infinite
loop. Our threat model allows an adversary to inject or/and
alter firmware code and data in such devices in a way that
introduces execution of malicious code or circumvention of
firmware functions in the code flow execution.

C. PHYLAX Architecture

PHYLAX architecture is designed to be adaptive and cus-
tomized to fit different application scenarios. Our tool is
configured based on a layered structure shown in Fig. 1.
Each layer receives information from the previous layer and
forwards the results to the following layer.
Reader: The reader is in charge of capturing information
based on three input categories:

a) Device-specific parameters: The memory size S of the
system, the memory and register access rate via the JTAG port
(Rm and Rr), the number of available hardware breakpoints
B, and the time to add or remove (tB) a breakpoint.

b) Process-specific parameters: The operation frequency
of the monitoring process f is related with the underlying
infrastructure in which PHYLAX is deployed. For example,
in the case of the power grid, f is the utility frequency (60Hz).

c) Application-specific parameters: First, the check interval
of the suspicious mode Csusp. Suspicious mode refers to a
secondary form of operation for PHYLAX, where intrusive
debugging is allowed. While PHYLAX’s main operating mode
is to remain transparent, specific triggers may warrant intrusive
inspection. An example is preventing instruction execution
from the data segment: a buffer overflow attack would send
instructions through data input and would redirect execution to
these instructions. A carefully placed hardware breakpoint can
detect this and halt the processor while triggering corrective
action. Second, given the process real-time requirements,
PHYLAX may not be able to scan the whole memory region
within f . Hence, regions can be classified into different types
τ and with different number of bytes scanned per process cycle
bc (up to Rm/f bytes can be read per cycle).
Adaptive Modeler: The next layer reads the parsed param-
eters and generates the monitoring routine. The algorithm is
based on: (a) a memory scanner, which continuously searches
for suspicious and potentially illegitimate memory modifi-
cations, (b) a breakpoint routine, which utilizes hardware
breakpoints in suspicious memory contents, and (c) a program
counter checker which verifies if the memory address of the
next instruction is valid.

a) Memory Scanner (MS): The device hosting PHYLAX
initiates monitoring after copying the golden firmware which
resides in the embedded chip memory, creating a reference
database. This assumes that the malware has not altered the
firmware stored in the non-volatile memory used to boot
the device. In case this assumption is challenged, a golden
firmware has to be retrieved from an external source (e.g. ven-
dor website). During monitoring, the MS continuously extracts
memory and inspects the data. Depending on the monitoring
process features and the memory access rate Rm, prioritizing
which type of memory region τi should be extracted more
frequently is essential; transferring the whole memory at once
is typically infeasible given the real-time process requirements.

Due to the application features, we classify the memory
regions into immutable and mutable. The immutable consists
of read-only code and data (ROM) such as application-specific
content that should not be modified. Mutable content includes
modifiable memory such as random access memory (RAM).
After every memory scan cycle the acquired memory is exam-
ined. PHYLAX reads the data corresponding to the immutable
content and refers to the database to retrieve the reference
memory acquired during initialization. Regarding the acquired
mutable data, PHYLAX checks if instructions (code) reside
in areas that are marked as non-executable. In such scenario,
PHYLAX sets a hardware breakpoint to that suspicious lo-
cation. If the execution flow encounters breakpoints in those
modules PHYLAX will alert about possible malware content.

b) Hardware Breakpoint Routine (HBR): Breakpoint in-
structions cause processors to enter a debug state allowing



investigation of the program after an address is reached.
Although limited in number, they already exist in hardware and
can be utilized in any type of memory. Most importantly, they
do not alter the executed code, stack, or any target resource,
thus they can be added without instrumenting the firmware.

The HBR is triggered when the MS identifies mutable mem-
ory that matches instructions. Then, a hardware breakpoint is
set to that location causing detection of unexpected behavior
if a malware deviates the execution to that address. Due to
limited availability of hardware breakpoints, their management
is critical. Thus, in the memory update cycle which mutable
content matches instructions, PHYLAX marks that address as
suspicious and adds it into a list. If the suspicious content
has no breakpoint set and there available ones, a breakpoint
is assigned. In the next update cycle, if any of the previous
suspicious addresses no longer point to valid instructions
then the breakpoint is removed. If all breakpoints are in use,
PHYLAX places the suspicious address in a waiting list.

c) Program Counter Checker (PCC): This mechanism exam-
ines if the PC is within the code area. This evaluation, although
valuable, needs to be performed moderately as the internal
register access is intrusive. PHYLAX activates PCC only when
entering suspicious mode. The scenario in which the PCC is
triggered at deterministic intervals opens up an opportunity for
an adversary to bypass the PCC. Thus, PHYLAX implements
a PCC subroutine which randomly sets the PCC check interval.
Once the PC is extracted, it is checked for validity, and,
depending on the result appropriate actions are taken.
Detector: The last layer is the detector which checks if any
mechanism detected a potential violation. In this comparison-
based phase, the acquired runtime JTAG data are analyzed.
In case of intrusion, an alarm will be triggered by PHYLAX
and appropriate actions, specified by the integrator, will be
initiated. Possible reactions include disabling/rebooting the
embedded device or restoring memory contents to expected
values. The presented work focuses on the detection part.

III. CASE STUDY: POWER GRID MONITOR

A. Power Grid Node

A node of a typical physical grid architecture consists a
bus protective element of a relay or recloser controller and a
Circuit Breaker (CB). The controller essentially manages the
status signal Bk(t) for the CB k. The analyzing step of the
controller has a minimum response time of two power cycles,
i.e., for a 60Hz system the CB trips if the fault current exceeds
the minimum trip value for more than two cycles (33ms) [9].

B. Experimental Setup

1) Hardware-In-The-Loop (HITL) testbed: We imple-
mented a prototype of PHYLAX monitoring a recloser con-
troller in a HITL testbed. The HITL environment is used for
the cybersecurity assessment of PHYLAX and to verify the
symbiotic relationship of the hardware equipment. PHYLAX
attaches to the JTAG of the tested embedded CB controller.
The controller features a 32-bit ARM Cortex-M4 168 MHz
core. Table I presents information about the tested device.

TABLE I: Monitoring power grid using PHYLAX.

Input
Category Parameter Value

Device

S 1Mb (Flash), 192Kb (RAM)
Rm 7.4585 bytes/ms
Rr 193.4ms
B 6
tB 3.5ms

Process f 60Hz

Application Csusp 0
M (See Table II)

TABLE II: Memory regions classification.

Priority Type τ Size Bytes/
cycle bc

Critical Immutable 40 B 40
High Immutable 6 kB 64

Medium Mutable 100 kB 64
Low Immutable & Mutable 1 MB 16

2) Tested malware cases: The implemented modifications
follow the firmware Trojan taxonomy specialized for smart
grid devices [10]. Since we focus on the operation of recloser
controllers, all the designed modifications can be applied to
CBs. The insertion phase of the modifications can be either
before or after the deployment of the embedded system via
JTAG port, chip-off forensics, and communication links.

In Case 1 a change of a single instruction starts an infinite
loop thread – Denial-of-Service (DoS) – after the recloser
over-current condition is triggered. The Case 2 is an always-
on, functional modification which alters the recloser minimum
trip setting. Case 3 is a time bomb modification; it injects code
to the memory data and once the breaker trips, the execution
is deviated to that address. Case 4 denies memory service by
continually accessing memory content, downgrading system
performance or causing DoS. Case 5 is similar to Case 1,
however, a greater number of instructions are modified to
perform a more meaningful malicious task. Finally, in Case
6 the scenario is similar to Case 3, however, it is adapted to
perform malicious tasks with larger in size injection of code.

C. PHYLAX Configuration

MS: Although memory can be extracted via JTAG at real-
time, i.e., when processor is running, the average access rate
of Rm = 7.4585 bytes/ms is low due the JTAG serial access to
memory. Hence, PHYLAX configures MS to collect memory
in small chunks per monitoring scan cycle (33.3ms for 60Hz).
Since we cannot extract the whole memory in 33.3ms, we
categorize memory into priority levels, as shown in Table II.
HBR: HBR utilizes all six breakpoints of Cortex-M4 and
implements a stack as a waiting list. When breakpoints are in-
use, the last address identified with suspicious data is pushed
to the stack. Once a breakpoint is available, the last element
added is popped and the breakpoint is set to its address.
PCC: Due to the invasive nature of accessing processor
internal registers, PCC requires considerably more time to
extract information. The total average time required for halting
the processor, extracting the PC, and resuming execution for
the tested device is 193.4ms. Thus, based on our case study
requirements assuming a process cycle of 33.3ms, PCC can
not be used (Csusp is set 0 in Table I).



Fig. 2: Time to detect each malware case via MS and HBR.

Fig. 3: PCC detection rate per random interval waiting time.

D. Results

In this part, we evaluate the capabilities of PHYLAX.
Malware targeting modifications of immutable memory are
captured by MS (Cases 1, 2, 4, and 5). HBR detects mod-
ifications in the data area of the memory (Cases 3 and 6).

Fig. 2 presents the average value and the standard deviation
of the time required by MS and HBR to detect each malware.
While PHYLAX detects modifications in critical memory
in <10ms (Case 2), other cases are identified with greater
latency. PHYLAX detects Case 3 with the highest latency
due to the large size of the mutable area to be read, and the
existence of a single instruction in the data part of the memory.
Still, PHYLAX is able to detect all tested cases within the
requirements of CBs operation: actual tripping of a CB is
an infrequent event, e.g., medium-voltage CBs (600V -15kV )
trip/close around 2000 times annually [11].

In this case study, PCC is disabled since a PC check
(193.4ms) cannot be performed in the 33ms cycle. To assess its
effectiveness, we remove the 33ms requirement and perform
experiments with random check intervals. Since PCC detects
illegitimate control flow, it can essentially detect Cases 3 and 6.
Fig. 3 summarizes the detection rate of Case 3 with respect to
the waiting cycle of PCC. For each scenario, the CB is tripped
up to 5 times and the simulation is repeated 10 times for each
cycle. Focusing on the 200ms waiting interval, PCC detects the
malware in the first attempt for 80% of the simulations, and
for the other 20% PCC detects it in the second attempt. As the
waiting time interval increases, the detection rate deteriorates,
as expected. The results reveal the careful trade-off between
the detection rate and the random waiting time, which must
be set accordingly for different infrastructure processes.

IV. LIMITATIONS AND DISCUSSION

Chassis intrusion required: JTAG pins are not exposed to
the device external interface. Thus, the integrator needs to
physically open the device, identify and tap on the JTAG pins.
JTAG accessibility: Vendors may attempt to destroy or lock
JTAG pins in order to prevent unauthorized access. While we
have not seen such methods in tested devices, we expect newer
devices to include such protection mechanisms.
Data annotation: While PHYLAX is developed to sidestep
vendors, prioritization of monitoring relies on data annotation.
This can be simple for power grid monitoring (i.e., check the
trip value), but more challenging for non-linear processes.
Limited dataset: The malware are the only ones we could
port from [10], given the capabilities of the tested device.
Deployment: Deploying PHYLAX across the board would
be prohibitive. Instead, PHYLAX needs to be selectively
deployed to vulnerable nodes. Also, PHYLAX can act as a
post-attack forensics analysis tool. In a cyberattack scenario
to the US grid, the organizations that operate the system
[1] must prudently allocate their resources towards recovery.
The government would have to investigate the attack without
relying on immediate support from utilities and vendors. In
that scenario, PHYLAX can prove an invaluable tool.

V. CONCLUDING REMARKS

Although ICS security is growing and newer devices incor-
porate security features, proper security may require years to
culminate. In this work, we propose PHYLAX, a monitoring
tool which can be used today on installed legacy devices con-
trolling real-time processes. PHYLAX can adapt and prioritize
based on the underlying process and the computing constraints.

ACKNOWLEDGMENT

This work was supported by the NYU Abu Dhabi Global
PhD Fellowship program.

REFERENCES

[1] “Rapid Attack Detection, Isolation and Characterization Systems
(RADICS).” [Online]: http://www.darpa.mil/.

[2] C. Eaton, “Hacked: Energy industry’s controls provide an alluring target
for cyberattacks.” [Online]: http://www.houstonchronicle.com/, 2017.

[3] M. Abadi, “Control-flow integrity,” in Proceedings of the Computer and
Communications Security conference, pp. 340–353, ACM, 2005.

[4] J. Newsome and D. Song, Dynamic taint analysis for automatic de-
tection, analysis, and signature generation of exploits on commodity
software. Internet Society, 2005.

[5] D. Arora et al., “Hardware-assisted run-time monitoring for secure
program execution on embedded processors,” IEEE Transactions on
VLSI Systems, vol. 14, no. 12, pp. 1295–1308, 2006.

[6] Z. Guo et al., “Control-flow checking for intrusion detection via a real-
time debug interface,” in SMARTCOMP, pp. 87–92, IEEE, 2014.

[7] X. Zhai, “A method for detecting abnormal program behavior on
embedded devices,” IEEE TIFS, vol. 10, no. 8, pp. 1692–1704, 2015.

[8] S. Kan, “Echeloned ijtag data protection,” in AsianHOST, IEEE, 2016.
[9] R. Patterson et al., “A microprocessor-based digital feeder monitor

with high-impedance fault detection,” in 47th Annual Conference for
Protective Relay Engineers, Texas, USA, 1994.

[10] C. Konstantinou et al., “Taxonomy of firmware trojans in smart grid
devices,” in PES General Meeting (PESGM), pp. 1–5, IEEE, 2016.

[11] Hydroelectric Research and Technical Services Group, Maintenance of
power circuit breakers, vol. 3-16. USBR, 1999.


