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Abstract—Cyberattacks against critical infrastructures, includ-
ing power systems, are increasing rapidly. False Data Injection
Attacks (FDIAs) are among the attacks that have been demon-
strated to be effective and have been getting more attention
over the last years. FDIAs can manipulate measurements to
perturb the results of power system state estimation without being
detected, leading to potentially severe outages. In order to protect
against FDIAs, several machine learning algorithms have been
proposed in the literature. However, such methods are susceptible
to adversarial examples which could significantly reduce their
detection accuracy. In this paper, we examine the effects of
adversarial examples on FDIAs detection using deep learning
algorithms. Specifically, the impacts on Multilayer Perceptron
(MLP) against two different adversarial attacks are investigated,
namely the Limited-memory Broyden-Fletcher-Goldfarb-Shanno
(L-BFGS) and the Jacobian-based Saliency Map Attack (JSMA).
Numerical results tested on the IEEE 14-bus system using load
data collected from the New York Independent System Operator
(NYISO) demonstrate the effectiveness of the proposed methods.

Index Terms—State estimation, false data injection attacks,
deep learning, adversarial examples.

I. INTRODUCTION

A successful cyberattack on power system infrastructure
could target various parts of the cyber-physical energy system,
and thus disturb the normal power grid operation and even
lead to catastrophic consequences [1]. In 2015, a cyberattack
successfully compromised the information systems of three
energy distribution companies in Ukraine and caused power
outages that affected around 230,000 customers [2]. Following
Stuxnet in 2010, cyberattacks targeting the power system
became a global concern.

One of the critical parts of the power system that could
be targeted is the Supervisory Control and Data Acquisition
(SCADA) system. SCADA continuously collects measure-
ments from Remote Terminal Units (RTUs). These measure-
ment data is then used by State Estimation (SE) to estimate
state variables of the current system topology. The state
variables are represented as a set of voltage magnitudes and
angles for each bus. The SE results are further leveraged by
the Energy Management System (EMS) to perform various
essential functions including contingency analysis, optimal
power flow, etc.

The accuracy of any SE algorithm depends on the quality
of measurements; any malicious ones, if not being detected,

could have severe effects as they could mislead operators into
making erroneous decisions. Indeed, studies have shown that
SE can be vulnerable to False Data Injection Attacks (FDIAs)
in which adversaries aim to hack multiple RTUs and inject
malicious measurements to mislead the EMS decision making
process [3]. The malicious measurements are well-coordinated
so that they could not be detected by the widely used residual-
based bad data detectors.

Current research on FDIAs against SE focuses on develop-
ing different attacking strategies [4], [S], as well as addressing
the issue via robust detection methods [6]-[9]. Among the
FDIA detection methods, machine learning algorithms have
been recently utilized due to their effectiveness and proper
detection accuracy [10]-[12]. The deep learning algorithms,
which are a subset of machine learning algorithms [13]-[16],
have also been investigated for FDIAs detection. Despite the
demonstrated success of many data-driven methods for detect-
ing FDIAs, they remain vulnerable to adversarial examples
that can fool machine learning algorithms [17]-[19].

Adversarial examples (also called adversarial attacks) are
well-designed malicious inputs to machine learning algorithms
that could result in incorrect output. They can occur during
multiple stages in the learning process. Depending on the
learning stage, adversarial examples fall within two attack
categories: poisoning attacks and evasion attacks. Evasion
attacks are staged during the testing phase in which the
adversary attempts to misdirect the learning algorithms to
make wrong decisions [20]. On the other hand, poisoning
attacks occur during the training phase in which the adversary
provides incorrect training data to manipulate the training
process. Depends on the attacker’s capabilities, the attacker
can manipulate testing data (which is called exploratory) or
both training and testing data (which is called causative) [21].
Based on the adversary’s knowledge, the attack can be further
classified into the white-box and black-box. For the former
one, the attacker is assumed to have full knowledge of the
target classifier including the training data, feature sets, the
learning algorithms, and the algorithm’s parameters.

Adversarial examples have been widely investigated in
image recognition applications with demonstrations of white-
box and black-box attacks [17]-[19], [22]. Recently, there
exist research efforts on performing adversarial examples on
machine learning algorithms used for power system applica-



TABLE I
NOTATIONS.

Parameter
The number of measurements
The number of state variables
m X n Jacobian matrix representing the topology
n X 1 vector of state variable
m X 1 vector of measurements
m X 1 vector of measurement errors
n X 1 vector of estimated state variables
m X m diagonal matrix, s.t., w;, 7 = 0;2, where a? is the
variance of the i-th measurement (1 < i < m)
Threshold for Lo-norm based detection of bad measurements
m X 1 Measurement vector with bad measurement
m X 1 Attack vector, s.t., zo = 2+ a
n X 1 Vector of estimation errors s.t., a = Hc

Notation
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tions such as load forecasting and SE [23]-[25]. In this paper,
we extent this direction to examine the effects of adversarial
examples on deep learning-based algorithms developed to
detect FDIAs. We demonstrate the impacts of two adversarial
attacks on the Multilayer Perceptron (MLP) scheme, namely
the Limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-
BFGS) and the Jacobian-based Saliency Map Attack (JSMA).
We show that adversarial attacks could dramatically reduce
the detection accuracy of the deep learning algorithms used
for FDIAs detection.

The rest of the paper is organized as follows: Section II
provides the problem description and formulation; Section III
describes the adversarial attack methods on MLP; Section
IV illustrates the simulation process and results, and finally
Section V concludes the paper. Common notations used in the
paper are listed in Table I.

II. PROBLEM FORMULATION
A. State Estimation and FDIAs

The SE is a process of using redundant system measure-
ments to estimate the most likely states of the system. The
linear SE model is formalized as:

z=Hzxz+e (1

where z € R™ denotes measurement vector which could in-
clude active and reactive power flow, active and reactive power
injection and voltage magnitudes, £ € R"™ denotes the state
variables (voltage magnitudes and angles), and e ~ A/ (0, X)
denotes the measurement noise which is assumed to follow the
Gaussian distribution. The Weighted Least Squares (WLS) is
a commonly used method for SE that can be mathematically
formulated as:

& = argmin ||z — Hz||3,
-1
=(H'"WH) H'Wz
where & is the estimated state; H,,«,, is the Jacobian matrix
which denotes the functional dependency between the mea-

surements and the state variables, and W is the corresponding
measurement error covariance matrix:

11 1
W =diag{ —, —5, -0, — 3
lag{o_%7 0_%7 70_/,2n} ( )
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In order to detect bad data that may be caused by meter
malfunctions, broken sensors, or even bad communication, the
Chi-square statistical test is often used:

J(z) & |z - Ha|ljy <7 4)

where the function J(z) is assumed to follow the Chi-squared
distribution at most m — n degree of freedom [3]. T € R is a
pre-determine threshold.

FDIAs aim to inject a well-coordinated vector of bad data
into meters without being detected and is formulated as:

Ze=z+a, (5)

where a is a non-zero vector and a linear combination of the
column vector of H [3].

a=Hc (6)
z, = H(x + ¢) @)
Eo=x+c 8)

The attacker can choose a random vector ¢ to inject random
false data into the meter as follows:

ai Hyy Hy,

H. Hap,
az | _ ¢ .21 +etoey, 2 9)
Am, Hml Hmn

Note that the carefully chosen vector ¢ can manipulate specific
measurements to the desired values without changing measure-
ment residuals via:
|20 — Hao| = ||z +a — H(@ + o)
= |z — Hz+ (a — Hc)|
—|lz - H&| <7

(10)

To build the attack vector, we assume that the attacker has
full local knowledge of the interested areas including local
H matrix and system parameters as in [26]. After completing
the successful FDIAs, measurement samples z and z, can
be collected, labeled, and prepared for further analysis by the
machine learning-based detection model.

B. FDIA Detection using Deep Learning Algorithms

In this paper, detecting FDIAs is considered as a supervised
binary classification problem [27]. The objective of the binary
classifier is to decide whether the given data S = {s;},_,
with M features and label J = {y;},_, is either z, a normal
measurement (negative class) or z, = z + a, an attacked
measurement (positive class) for all z, and z € S. The output
class labels are:

(an

) +1fora; #0
N —1fora; =0

where a; is the iy, element of the attack vector. The distance
between normal and attacked measurement vectors is defined



by the attack vector in the measurement set S [27]. The dis-
tance between two unobservable attack vectors, i.e., a; = H;c
and a; = Hjc is computed as follows:

l2i = 2zill, + llai — ajly, if i,5 € A
[2i — zjlly + llaslly, if i€ A j €A

llzi — 2, ifi,5 € A

||Z“7 ~ “ay ||2 =

(12)
a; #0, Vie A (13)
a; =0, VicA (14)

where z,, = 2; + a;, 2q4; = zj + a;, and A represents the
indices of the measurements that will be attacked.

C. The Multilayer Perceptron (MLP)

The MLP, also called the feedforward neural networks or
deep feedforward networks, is a network consisting of multiple
layers of perceptrons. They are called feedforward because
the information flows in one direction from the input through
the hidden layer to the output. MLP has the capability of
learning any mapping function, and it has been proven to be
a universal approximation algorithm. The main equation for a
single perceptron is as follows:

M,
y=0(>_ wis; +Db) (15)

i=1
where y is the estimated output from the activation function,
w is the weight, s; is the input, b is the bias, and ¢ is the
non-linear activation function. The activation function is used
to define the output of the node for a given input or a set of
inputs. Note that, the activation function is a critical feature
of deep learning since it determines whether a neuron should
be fired or not by calculating the weighted sum of inputs and
adding a bias to it. MLPs utilize back-propagation training
algorithms to update the weights by using gradient descent to
minimize the following error function:

" 2
(yj — @(Z w;sj, + b)) (16)
i=1

The training process for deep learning algorithms requires
a large amount of data to achieve a proper trade-off between
generalization and training performance. Unlike other machine
learning algorithms, deep neural networks are trained by
using iterative, gradient-based optimizers, which drive the cost
function to a very low value, and this allows increasing the
number of correctly classified data points.

M,

E(w,b,{S,Y}) =

j=1

III. PROPOSED METHODOLOGY

In this section, we describe the adversarial attacks utilized
against the MLP-based detection method. The attacks are
based on the white-box methodology where the intruder has
partial knowledge of the MLP detection model in order to
construct the adversarial examples. In both attack scenarios,
the adversary needs to have access to the testing samples to
successfully attack the MLP [28], [29].

A. Limited-memory BFGS (L-BFGS)

Szegedy et al. defined the adversarial example as an input
that is very similar to their real counterparts according to a
distance metric [28], and it can cause a classifier to mis-
classify it. As part of this work, the L-BFGS is advocated
to generate adversarial examples. Note that the generated
adversarial examples could also be generalized to different
models and different training datasets. The L-BFGS is a non-
linear gradient-based numerical optimization algorithm that
uses a limited amount of memory. It is a popular algorithm
for parameter estimation in the machine learning field. Given a
measurement sample s, an attacker can generate an adversarial
example s’ that is close to s as follows:

s’ =s54¢ (17)
Then, the following optimization problem is formulated:
Minimize : ||s — s ||2
Subjectto: f(s+e¢) =1 (18)
s+e€[0,1]™

where ||s — s'||2 is the Lo-norm and [ is the target class. The
attacker’s objective is to train the model on:

f(sh =145 €0, 1™ (19)

where Eq. (19) is a non-linear optimization problem and
mathematically difficult to solve. To this end, L-BFGS is
utilized and the optimization problem is re-formulated as
follows:

Minimize : A~ ||s — s ||3 4 lossg,(s)

Subjectto: s+ee€0,1]™ (20)

where ) is a hyper-parameter and 0SSy is the loss function.
During the implementation process, the algorithm performs a
binary search to find the optimal values for A with multiple
iterations. The L-BFGS algorithm can be used for estimating
the inverse Hessian matrix to steer its search through the
variable space. The memory parameters for the algorithm,
i.e., the maximum number of correction pairs that defines the
approximation of the Hessian matrix, are randomly selected
and updated in every iteration.

B. Jacobian-based Saliency Map Attack (JSMA)

The JSMA is developed based on the Ly-norm distance [29],
and its goal is to build a saliency map with the gradients.
The saliency map is a standard method used to visualize the
network. An adversarial saliency map indicates which features
should be perturbed to most effectively achieve an adversarial
attack. For the JSMA, the gradients are modeled based on
the effect of each input feature, where the gradients are
directly proportional to the probability that the input feature
is correctly classified as the target class. The JSMA allows
the attacker to find and select the most important feature that
maximizes the gradient regarding the saliency map. Then,
noise is added to the feature to increase the likelihood of
labeling the measurements as the target class. The following
steps describe the JSMA method:



1) Compute the forward derivative 5/ f(s):

df (s) dfj(S)}
Vf(S) ds |: dSi i€l---m,jEL--n ( )
2) Build up a saliency map D based on the forward
derivative:
0 if Lg;?j‘” < 0or 5;5' ngif') >0
D* (s, ) = adf (s) (s ddf (s) g .
— et > —apt otherwise
576!
(22)

where D (-) measures how the feature s; is positively
correlated with & = y'(s) while being negatively corre-
lated with all other classes ¢’ # §. If either condition is
violated, then saliency is reset to zero.

3) Adjust the most important feature based on the saliency
map and repeat this process until the output becomes the
target class. Note that the previous optimal value found
for D is used as an initial value for the next attempt.

The non-target JSMA is another approach of the JSMA
proposed by Wiyatno et al. [29]. Its idea is to increase the pre-
diction confidence of the true class label instead of increasing
the prediction confidence of the adversarial example’s label.

IV. SIMULATION RESULTS

In this section, we evaluate the effects of adversarial ex-
amples against FDIA detection algorithms based on MLP. All
tests are performed on the IEEE 14-bus test system. The load
data utilized in the simulation are gathered from the New York
Independent System Operator (NYISO) [30]. We utilized the
actual load flow data profiles for 11 NY state regions recorded
every five minutes from January 2018 until June 2018, with
a total of 288 readings daily. In order to prepare the data
for SE, each load bus of the IEEE 14-bus system is linked
with one region of NYISO [31]. Then, we fit the normalized
load data into the 14-bus case study. We run a power flow
analysis to collect true measurement sets and the true state
vector . The FDIA samples are simulated based on the DC
SE; the number of measurements k ranges from 1 to m = 54
for the 14-bus system. FDIAs are performed based on two
different attack scenarios: random and targeted ones [3]. For
the targeted attack, we simulated different injection amounts
of the measurements represented within the vector ¢ of Egs.
(7), (8), ranging from 2-5% in terms of the difference between
true value and false value of the state variable.

Two different sets of attacked measurements of z, are
generated for one day to speed up the process with a total
of 3168 labeled samples. To evaluate the performance of the
detection algorithms, we measure the accuracy index as the
ratio of the total correct predicted observations over the total
observations. Recall and precision are also used for the JSMA
attack since the data is unbalanced.

A. Detecting FDIAs based on MLP

The MLP networks are constructed and implemented using
Keras API in python with the TensorFlow library. The Scikit
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Fig. 2. Testing loss and Accuracy after L-BFGS.

library is also used to determine the critical parameters for the
model throughout the parameter space. The MLP is trained
with stochastic gradient descent using back-propagation. The
Exponential Linear Units (ELU) activation function is used
for the hidden layer while the Sigmoid is utilized for the
output layer. The latter is directly related to the output result
of the class label. For the input and output layers, the number
of neurons is fixed (I hidden layer of 100 neurons). The
MLP hyper-parameters are selected by performing GridSearch
and utilizing Python’s Scikitlearn library. GridSearch is an
optimization technique that constructs and evaluates the MLP
model for each combination of parameters and finds the
optimal hyper-parameters for the model [32]. Besides the
accuracy index, the cross-entropy loss or loss function is
also used to measure the performance of the MLP binary
classification model, where a perfect classifier model has a
loss of 0. The test results are shown in Fig. 1. It can be seen
that MLP is able to achieve an accuracy rate of almost 99%
with a loss of = 0.1.

B. Limited-Memory BFGS

In this section, we show how the L-BFGS adversarial attack
can pose significant challenges to the MLP detection algo-
rithm. Specifically, the L-BFGS adversarial attacks are first
performed on the testing data. For the limited memory matrix,
the number of corrections pairs and iterations are set to be
15 and 17, respectively. This allows us to yield the maximum
effects on FDIAs detection accuracy. Pytorch is used to model
the network and extract the gradients with respect to the input
features. Next, a bisection search is performed to determine
the optimal value for e. The test results are shown in Fig. 2.



TABLE II
TESTING ACCURACY, RECALL AND PRECISION VS. DIFFERENT ¢
AMOUNT.
o Testing Accuracy (%) | Recall (%) | Precision (%)

0.2 87.65 % 80.02 % 100 %

0.3 79.77 % 833 % 89.3 %

0.02 66.32 % 79.5 % 78.13 %

0.03 50.09 % 63.4 % 70.66%

0.01 10.76 % 40.32 % 55.79%

The optimal value of € is applied to a small amount of
the testing samples. We observe from Fig. 2 that at each
iteration the loss function is increasing, meaning that the
detection accuracy is gradually decreasing. After 15 iterations,
the detection accuracy reaches ~ 20%. This indicates that the
detection results from MLP are no longer reliable.

C. Jacobian-based Saliency Map Attack (JSMA)

The non-target JSMA attack is also used to investigate the
impacts of adversarial attacks on MLP detection performance.
Unlike the target JSMA, the non-target JSMA attack formu-
lation does not depend on any specific class irrespective of
increasing or decreasing the feature values. First, we train
the MLP model f on the original training dataset s. Then,
the adversarial data samples s’ based on the output from the
saliency map D are generated. This indicates that the valuable
features are modified by adding § amount to them (see Eq.
(22)). Table II shows the effects of different amounts of 4 on
the critical features. Note that the less amount of §, the higher
impacts on the MLP detection accuracy will be. Despite that
MLP is able to achieve very high detection accuracy (Fig. 1),
its performance has been dramatically reduced after the non-
target JSMA, yielding detection accuracy to be around 10%
with recall almost 40%.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we evaluated the robustness of MLP for the
detection of FDIAs in the presence of adversarial examples.
Two different adversarial attack methods are investigated,
namely L-BFGS and JSMA. Our results show that adversarial
attacks could dramatically reduce the detection accuracy of
the MLP method. For future work, we will investigate more
adversarial attacks considering black-box attacks where the
adversary has no prior knowledge of the system and study the
effects of different scenarios on the power system non-linear
SE. Another direction is to build robust detection algorithms
to mitigate performance degradation issues.
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