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Abstract—Critical infrastructure components nowadays use microprocessor-based embedded control systems. It is often infeasible,
however, to employ the same level of security measures used in general purpose computing systems, due to the stringent performance
and resource constraints of embedded control systems. Furthermore, as software sits atop and relies on the firmware for proper
operation, software-level techniques cannot detect malicious behavior of the firmware. In this work, we propose ConFirm, a low-cost
technique to detect malicious modifications in the firmware of embedded control systems by measuring the number of low-level
hardware events that occur during the execution of the firmware. In order to count these events, ConFirm leverages the Hardware
Performance Counters (HPCs), which readily exist in many embedded processors. We propose a comparison-based technique to
detect malicious modifications in firmwares with simple control-flows. For firmwares with more complex control-flows, we use machine
learning techniques to automatically extract the relations among different hardware events. This method significantly reduces the
number of pre-stored valid HPC signatures without compromising the detection accuracy. Finally, we reduce the consumption of local
resources by implementing a remote-based detection mechanism. We evaluate the detection capability and performance overhead of
the proposed technique on various types of firmware running on ARM- and PowerPC-based embedded processors. Experimental
results demonstrate its practicality and effectiveness.

Index Terms—Firmware, hardware performance counters, attacks, detection.

F

1 INTRODUCTION

The interconnection of embedded devices as well as their
intelligent capabilities, make embedded systems an integral
part in a wide range of applications. Such applications
include mobile phones, measurement equipment, home au-
tomation technologies, and even mission critical industrial
control systems. For example, power grid transformation
into a more dynamic and interactive smart system is highly
dependent on embedded devices [1]. According to a recent
study, the embedded systems market is expected to generate
over $2 trillion in revenue during 2015 [2]. Furthermore,
taking into account the Internet-of-Things (IoT) continuous
advancements, embedded devices as IoT nodes will consti-
tute the front lines where decisions are made [3].

The data and programs written onto the non-volatile
memory of a device, make the system functional as they con-
nect hardware and software modules. All these necessary
instructions consist the firmware layer of a system. As a re-
sult, firmware has become a major focus for targeted attacks
due to its substantial role in an embedded system operation.
Effective security mechanisms are, therefore, of paramount

• X. Wang, C. Konstantinou and R. Karri are with the Department of
Electrical and Computer Engineering, New York University Tandon
School of Engineering, Brooklyn, NY 11201, USA.
E-mail: {xw338, ckonstantinou, rkarri}@nyu.edu

• M. Maniatakos is with the Department of Electrical and Computer
Engineering, New York University Abu Dhabi, Abu Dhabi, 129188, UAE.
E-mail: michail.maniatakos@nyu.edu

• S. Lee, P. Robison, P. Stergiou and S. Kim are with Consolidated Edison,
New York, NY 10003, USA.
E-mail: {leese, robisonp, stergioup, kims}@coned.com

importance in order to provide protection against firmware
malicious attacks.

The exploitation of firmware vulnerabilities in order to
attack embedded devices has been reported for various
types of embedded systems. For example, Miller demon-
strated how to reprogram a smart battery through firmware
modifications [4]. It has also been shown that arbitrary
malware can be injected into printers due to vulnerabilities
of the remote firmware update procedure [5]. A recent large-
scale analysis of firmware images revealed 38 previously
unknown vulnerabilities in over 693 firmware images [6].
Many other firmware modification attacks exist in a wide
range of devices such as hard-drives [7], routers [8], [9], [10],
[11], keyboards [12] and mice [13], multi-function peripher-
als [14] and PBX equipments [15].

Firmware attacks have also been demonstrated in em-
bedded systems used for mission critical applications. For
instance, Checkoway et al. have presented an attack on the
electronic control units of a car due to a custom firmware
upload [16]. Hanna et al. found that automated external
defibrillators used for treating cardiac arrhythmias would
accept counterfeit firmware updates [17]. In addition, a
proof-of-concept experiment has been used to demonstrate
how a modified version of firmware can be updated and
uploaded to a Programmable Logic Controller (PLC) [18].

Providing security countermeasures to firmware mali-
cious actions should be the initial step for protecting not
only embedded systems but any kind of computing system.
If the underlying firmware is not trusted then any other
mechanism implemented at the Operating System (OS) or
application level cannot be trusted. To date, several tech-
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niques have been proposed and implemented to detect ma-
licious firmwares. However, these techniques require either
extra hardware components (e.g. Trusted Platform Module)
or code verification software designs. These designs often
rely on sufficient resources for which an embedded system
has limited capabilities (e.g. computation resources, power
consumption, memory usage, communication bandwidth,
etc.).

In this work, we propose a low-cost technique to detect
firmware modifications on embedded systems, overcoming
the challenges and constraints of existing schemes. The pro-
posed technique, called ConFirm, is directly encapsulated
in embedded systems in order to indicate whether or not
a firmware has been maliciously modified. The detection
mechanism is based on the monitoring of low-level hard-
ware events: since a program is composed of a sequence
of various types of instructions, the program characteris-
tics can be uniquely captured by the total occurrences of
hardware events during its execution, as well as the relation
between the counts of different monitored events. Examples
of hardware events include branches, retired instructions,
returns. The execution of a maliciously modified firmware
would result in different occurrences of monitored hardware
events compared to the benign firmware code.

Access to low-level hardware events for running pro-
cesses can be achieved by using Hardware Performance
Counters (HPCs). Based on the architecture of the embed-
ded device processor (e.g. ARM, MIPS, PowerPC etc.) and
its Performance Monitoring Unit (PMU), HPCs measure nu-
merous and different types of hardware events [19]. While
HPCs are mainly used for performance tuning, ConFirm
leverages HPCs for detecting malicious firmware modifica-
tions. Since the monitored events are automatically counted
by HPCs at the hardware level, ConFirm does not have
any real-time computing constraints. In addition, it does
not require extra hardware. Therefore, the resource cost
and overhead of the monitored embedded system remain
significantly low. Summarizing, our contributions are as
follows:

• We propose and design ConFirm, a host-based
firmware validation tool taking into account the lim-
ited resources of embedded systems. ConFirm lever-
ages existing hardware features (HPCs) to identify
whether or not the firmware of an embedded system
is malicious.

• A prototype of ConFirm is implemented on ARM-
and PowerPC-based embedded platforms. Modifi-
cation attacks are applied to firmware samples of
commercial devices in order to demonstrate the fea-
sibility of the technique. We also evaluate the per-
formance and storage overhead on the monitored
system.

• We use machine learning techniques to automati-
cally extract the relations among different hardware
events. This method significantly reduces the num-
ber of pre-stored valid HPC signatures without com-
promising the detection accuracy. Finally, we reduce
the consumption of local resources by implementing
a remote-based detection mechanism.

The paper is organized as follows: Section 2 discusses

the prerequisites of using ConFirm. Section 3 presents the
overview of ConFirm as well as implementation details. The
evaluation results are shown in Section 4. Section 5 describes
the detection with support vector machine based machine
learning. The remote-based detection technique is presented
in Section 6. Related work on firmware attacks and detection
mechanisms are given in Section 7. Finally, we conclude the
paper in Section 8.

2 PREREQUISITES

In this section, we introduce the adversarial model used
throughout the study, as well as the essential requirements
for deploying ConFirm on an embedded device.

2.1 Threat Model
We focus on attacks which modify the firmware of em-
bedded systems. Specifically, we target attacks that modify
the firmware code in a way that introduces execution of
malicious code or circumvent firmware critical functions
in the code flow execution. An attacker has access to ex-
ploits that allow execution of arbitrary malicious code. For
instance, the attacker can perform attacks based on code
injection and code reuse attacks such as the return-to-libc
or return oriented attacks. In addition, these exploits can
either be zero-day firmware vulnerabilities or firmware code
modifications. The malicious firmware alternation can be
injected to the system online, i.e. during a firmware update,
or offline, i.e. by uploading the malicious image to the
device (requiring system reboot).

2.2 Hardware Performance Counters
HPCs are special-purpose registers built into the PMU of
a modern microprocessor in order to store information
about hardware events [20], [21]. Event selectors specify the
user-defined choice of hardware events to monitor. Since
HPCs were originally designed for performance debugging
of complex software, software developers heavily rely on
HPC-based profilers to understand the runtime behavior of
a program and tune its performance.

HPCs provide access to detailed performance informa-
tion with lower overhead and higher accuracy than software
profilers. Furthermore, HPCs do not require any source code
modifications. The number of available HPCs, as well as the
number of hardware events, vary from one processor model
to another [22]. For example, while the ARM V8 Cortex-A53
core has 4 HPCs, and can count 62 events [23], the fourth
generation of 32-bit PowerPC microprocessors (such as the
PowerPC 7450) incorporates only 35 events and 4 HPCs [24].

2.2.1 Computational Path Analysis with HPCs
A subroutine of the firmware generally has multiple compu-
tational paths in its control-flow graph. Each computational
path goes through different code blocks and therefore exe-
cutes different code. The executed code generates different
vectors in terms of the counts of hardware events. A compu-
tational path is primarily determined by the input applied
to the subroutine and the state of data structures used by the
subroutine. Let C(Ex) denote the count of event x from the
execution of a targeted computational path. If m hardware
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Fig. 1: Computational path analysis with HPCs. The execu-
tion of the valid paths P1 and P2 in a monitored subrou-
tine generates different vectors V1 and V2 in terms of the
occurrences of low-level hardware events. As an example,
malicious execution could go through path P3, generating
an unexpected HPC vector V3 which is different from V1
and V2.

events are monitored simultaneously, an HPC vector V with
m elements can be obtained as follows:

V = [C(E1), C(E2), C(E3), ..., C(Em)] (1)

With a selected set of hardware events, a vector can be
consistent for every execution as discussed in detail in
Section 3.4 (except the situation that the path contains a loop
with a dynamic number of iterations, where a measurement
only targeting the loop is required). As a result, each vector
can be considered as the signature of a specific path. Con-
Firm uses such an HPC signature to verify the execution
of computational paths in a subroutine of the monitored
firmware. The computational path analysis is presented in
Figure 1.

Control-flow modifications underlie a wide range of
common attacks. In other words, an attacker typically hi-
jacks the original control-flow of the victim program in
order to perform any malicious actions [25]. This is achieved
by executing code or calling functions not included in the
control-flow. Examples include stack-based buffer-overflow
and heap-based “jump-to-libc” attacks [26], [27]. Enforcing
control-flow integrity (CFI) as a defense can thwart such
attacks. However, CFI techniques are expensive with over-
heads that may be as high as 25% [28] to 50% [29]. In
addition, CFI techniques are unable to perform instrumen-
tation of modules separately [30]. They typically require all
modules of a system (libraries included) to be available at
the instrumentation time.

2.3 Root of Trust
The booting of an embedded system is a multi-phase pro-
cess. Each phase is responsible for loading the next phase.
The first code that is executed in this boot sequence resides
in a part of memory that is protected from accidental era-
sure or corruption and is typically called boot Read-Only-
Memory (ROM). The boot ROM code locates and executes
the second software phase, called the pre-loader. The pre-
loader initializes memory and an appropriate subset of the
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Fig. 2: High-level structure of ConFirm. The ConFirm core
consists of three components: an insertion module that
inserts checkpoints to the monitored firmware, an HPC
handler that drives the HPCs and a database that stores
valid HPC-based signatures.

peripheral devices in order to access and load the next
phase (bootloader) into main memory. The bootloader is
responsible for locating and loading the OS or firmware
which will run the embedded system applications on the
device. If the embedded device is a non-OS based system,
then the firmware tasks are executed in an infinite loop
(super loop based execution). Because the three phases (boot
ROM, pre-loader and bootloader) reside in a reserved read-
only area of the system, they constitute the root of trust of
the embedded system [31].

Since write-protected memories are secure and protected
by design, we leverage the root of trust by incorporat-
ing ConFirm HPC profiling-based scheme within the boot-
loader. As a result, ConFirm remains in a trusted area,
immune to malicious modifications

3 CONFIRM OVERVIEW

The high-level structure of ConFirm is shown in Figure 2. A
legacy bootloader is extended with the ConFirm core. The
core consists of three components: a) an insertion module
that places checkpoints to the monitored firmware, b) an
HPC handler that drives the HPCs, and c) a database that
stores valid HPC-based signatures. All these components
are stored in write-protected non-volatile memory. This
prevents attacks from compromising ConFirm while still
allowing authorized updates1.

The advantages of ConFirm can be summarized as fol-
lows:

• ConFirm core resides in the bootloader, thus is diffi-
cult to be detected or disabled by an adversary.

• ConFirm monitoring can be instrumented within any
executable, and does not depend on the functionality
of the monitored firmware.

• ConFirm directly utilizes the hardware features of
the host platform, bypassing the overhead associated
with the software layers.

1. Similar to general-purpose computers using BIOS for booting, an
embedded system bootloader can only be updated outside the nominal
operation of the device.
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Fig. 3: Control-flow interception in ConFirm. A Detour
style inline hooking mechanism is employed to redirect
the control-flow to the ConFirm when the execution of the
firmware reaches a checkpoint.

3.1 ConFirm Modules

The bootloader transfers the control to ConFirm after the
firmware image is loaded into memory and before its exe-
cution. The checkpoint generator of ConFirm automatically
inserts checkpoints to pre-determined locations across the
firmware. The firmware validation starts when the first
checkpoint is reached. A pair of two adjacent checkpoints
forms a check window during which the execution of the
firmware is monitored. Each checkpoint is the end point
of the previous check window and the starting point of the
next check window. Hence, the check windows are allocated
contiguously without any gaps following the control-flow
of the firmware. More details about checkpoint insertion are
presented in Section 3.2.

After checkpoint insertion, the control-flow proceeds
to the HPC handler. The HPC handler executes a small
sequence of instructions in order to configure, initialize
and enable the HPCs. With the HPCs enabled, the control
is transferred back to the bootloader which initiates the
execution of the firmware.

Once the execution reaches a checkpoint, ConFirm inter-
cepts the control-flow and redirects it to the core module.
The core then communicates with the HPC handler and the
HPC-based signature database. Specifically, the event counts
for the previous check window are read and compared
with the corresponding signatures in the database. Then
the HPCs are reset for the next check window and the
execution of the monitored firmware continues. The HPCs
keep counting the occurrences of the hardware events until
the next checkpoint is reached.

3.2 Checkpoint Insertion

The prototype implementation of ConFirm uses a Detours
style inline hooking mechanism for control-flow intercep-
tion and checkpoint insertion [32]. The checkpoint insertion
technique is shown in Figure 3. In the monitored firmware,
the instruction at a checkpoint is first copied and preserved
in a certain memory location in RAM which is called a
”trampoline” (arrow (a) in Figure 3). Then, the firmware
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A BC
CA-C(Ex) CC-B(Ex)

CA-B(Ex)

(a)

Check_window(A,D)

A BC D

Check_window(D,B)
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Fig. 4: Checkpoint randomization to avoid prediction of
check windows.

instruction is replaced with a jump instruction to transfer
the control to the trampoline (b). In the trampoline, another
jump instruction is executed that targets a location in the
ConFirm core module (c). The sequence of instructions in
the Confirm core module ends with a jump back to the
trampoline after the check is completed (d). The copied
instruction which is replaced in the original subroutine, is
executed in the trampoline before the control is transferred
back to the monitored subroutine (e). The next instruction
to be executed in the subroutine is the one right after
the replaced instruction. With such an inline hooking, the
functionality of the subroutine remains the same after ap-
plying the check. For each checkpoint, a dedicated tram-
poline needs to be allocated since the instruction copied
and preserved for each checkpoint is different. Also, the
jump instructions in different trampolines target different
locations in the ConFirm core module.

3.2.1 Checkpoint Randomization

Checkpoints are inserted at the entry and exit points of each
monitored subroutine. This opens up an opportunity for
an attacker to manipulate the HPCs, evading the detection.
Figure 4 (a) shows an example in which an attacker can
bypass the check if he knows the checkpoint locations.
Points A and B are the entry and exit points of a compu-
tation path P (A,B) of a monitored subroutine. Thus, two
checkpoints are inserted at locations A and B. Location C is
an intermediate point of the computation path P (A,B).

Assume that the attacker modifies the control-flow be-
tween A and C . The count of event x from A to C after
the modification is CA−C(Ex). If the attacker knows the
“good” value of CA−B(Ex) (the count of the check window
(A,B)), he can modify the control-flow between C and
B to make CA−C(Ex) + CC−B(Ex) equal to CA−B(Ex),
and thus bypassing the check. To prevent attackers from
predicting the check windows, checkpoints are also inserted
at arbitrary locations in the monitored subroutines (besides
the entry and exit points), as shown in Figure 4 (b). Such
locations can be changed every time the system reboots
or when the control is transferred at runtime to ConFirm.
Specifically, the insertion module maintains multiple sets
of locations where the checkpoints can be inserted. When
the system boots one set of locations is selected randomly
and checkpoints are inserted. Besides the boot-time check-
point insertion, the insertion module also selects a new set
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of locations and updates the checkpoints at runtime. The
addresses of trampolines are also updated when a new set
of checkpoints is inserted.

3.3 Comparison-based Detection

ConFirm uses a comparison-based two-phase detection as
shown in Figure 5. In the offline profiling phase, the HPC
signatures of all monitored execution paths are generated
from a clean copy of the targeted firmware. In the online
checking phase, the same monitored paths are measured
and the runtime signatures are compared against the cor-
responding golden ones.

3.3.1 Offline Profiling

This phase is performed before the device is deployed. The
clean copy of the firmware is executed on the device with
checkpoints inserted at pre-determined locations, splitting
the execution flow into multiple check windows. During
each check window, the occurrences of m monitored hard-
ware events for a computational path are measured and the
HPC vector V = [C(E1), C(E2), C(E3), ..., C(Em)] is ob-
tained. The measurement is performed for all the n possible
paths in the check window to complete the HPC signature of
a check window W = [V1, V2, V3, ..., Vn]. After total x check
windows have been profiled, the HPC-based signatures
of the monitored firmware S = [W1,W2,W3, ...,Wx] are
generated and stored in the database as the golden reference
signatures.

3.3.2 Online Checking

When a check is invoked during the online checking phase,
ConFirm reads all the configured counters and obtains the
runtime HPC vector V for the current check window. Then,
ConFirm refers to the signature database and retrieves the
reference vectors generated offline for the same check win-
dow. The runtime HPC vector V is matched with the offline
references. If a match is found, indicating the tested vector
V is valid, the control returns to the monitored firmware
and execution resumes. In case the runtime vector does
not match to any of the offline references, a deviation will
be reported by ConFirm and appropriate actions, specified
by the integrator, will be initiated. Possible reactions to
anomaly detection include rebooting the system, generating
an alarm and disabling the device.

3.4 HPC Selection

The hardware events on a platform can be categorized into
different groups, such as load/store events, cache events
and execution unit events. This gives us many options to
model an HPC signature. However, not all the available
hardware events are good candidates for modeling a repeat-
able signature, as the occurrence of some events depends
on the current, unpredictable system state. For such events,
the occurrences vary dramatically given different execu-
tions. Extracted signatures must be repeatable and robust.
Experimental results presented in Section 4.1 elaborate on
the selection of proper HPCs for the target firmwares.
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Fig. 5: Offline profiling phase (left-hand side) and online
checking phase (right-hand side) of ConFirm comparison-
based two-phase detection.

TABLE 1: The hardware events of ARM Cortex A15 (a)
and PowerPC e300c3 (b) with small C.V against system
disturbances. A smaller C.V indicates a better repeatability
of an HPC-based signature.

(a)

Hardware event C.V (%)
BRANCH instruction executed 0.72

INSTRUCTION architecturally executed 0.93
RETURN instruction speculatively executed 1.07
STORE instruction speculatively executed 1.27
LOAD instruction speculatively executed 1.27

Average over all tested events (∼70) 18.9

(b)

Hardware event C.V (%)
BRANCH instruction completed 1.05

Completed INSTRUCTION 1.13
LOAD micro-ops completed 1.59
STORE micro-ops completed 1.78

BRANCH instruction MISPREDICTED 2.35
Average over all tested events (∼40) 16.7

4 EXPERIMENTAL RESULTS

In this section we demonstrate the detection capability of
ConFirm. We also evaluate the performance and storage
overhead when ConFirm is enabled.

4.1 ConFirm Capability

To demonstrate the effectiveness of ConFirm, we test our
technique with two real-world firmwares of embedded
systems on two different platforms: Samsung Exynos Arn-
dale [33] and Freescale MPC8308RDB [34]. The Arndale
platform has an ARM Cortex-A15 processor with 6 HPCs
and can support 70 different hardware events [35]. The
MPC8308RDB platform contains a PowerPC e300c3 core
which has 4 HPCs and can support 40 available hardware
events [36].

In order to determine which hardware events are more
robust for signature modeling, we execute a set of software
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TABLE 2: ConFirm detection capability. The numbers are the event count deviations D(Ex)(Ptest, Pref x) (%) of the
malicious path from the valid paths in different check windows of the monitored subroutines from three ARM-based
firmware ((a), (b), (c)) and three PowerPC-based firmware ((d), (e), (f)). For each path, the bold number indicates the largest
deviation among all events. The tested path (malicious) is not matched to any valid path indicating a successful detection.

(a)

Path Hardware event (Ex)
I B L S
Check window 1

1 27.3 33.3 37.5 50.0
2 77.1 71.4 81.5 50.0
3 73.3 71.4 76.2 60.0
4 51.5 60.0 58.3 0.0
5 65.9 50.0 75.0 60.0
6 69.8 71.4 76.2 33.3
7 62.8 71.4 66.7 33.3

Check window 2
1 77.8 33.3 150.0 0.0
2 44.8 60.0 16.7 66.7

Check window 3
1 33.8 175.0 31.6 40.0
2 16.5 15.8 8.7 12.0

(b)

Path Hardware event (Ex)
I B L S

Check window 1
1 39.9 41.6 50.0 76.2
2 29.1 35.9 57.7 84.2
3 35.6 28.9 71.4 88.9
4 30.8 47.4 33.3 69.6

Check window 2
1 36.6 50.9 80.0 73.3
2 32.8 87.5 53.3 64.7
3 38.9 63.6 34.8 84.6

Check window 3
1 20.7 22.9 46.7 69.2
2 19.4 21.6 53.8 75.0

(c)

Path Hardware event (Ex)
I B L S

Check window 1
1 28.6 35.4 51.7 52.7
2 26.9 32.6 59.7 50.0
3 27.2 38.7 72.1 61.7
4 30.3 42.7 58.5 67.4
5 36.1 47.6 64.6 85.3

Check window 2
1 31.0 46.9 80.0 79.2
2 24.4 53.6 77.4 67.9
3 32.0 71.4 82.8 90.5

Check window 3
1 22.4 60.0 76.0 63.2
2 22.8 50.0 73.1 70.6

(d)

Path Hardware event (Ex)
I B L S
Check window 1

1 65.0 266.7 78.6 250.0
2 10.0 10.0 0.0 55.6
3 41.4 83.3 16.7 33.3
4 6.5 22.2 4.2 47.4
5 5.7 10.0 7.4 33.3

Check window 2
1 95.8 76.8 62.1 30.0
2 19.5 51.1 70.6 30.0
3 65.0 46.7 37.5 44.0

Check window 3
1 30.3 12.0 16.7 47.4

(e)

Path Hardware event (Ex)
I B L S

Check window 1
1 39.2 61.5 41.7 25.0
2 53.6 78.4 39.2 40.0
3 41.1 56.3 46.5 28.6
4 44.4 64.5 40.8 30.8
5 46.2 72.7 52.6 33.3
6 49.6 75.5 57.1 38.1

Check window 2
1 45.0 63.6 60.0 33.3
2 45.5 68.3 71.4 40.0
3 56.9 77.8 55.6 50.0
4 53.4 87.5 65.2 46.2

Check window 3
1 48.7 90.5 57.9 33.3

(f)

Path Hardware event (Ex)
I B L S

Check window 1
1 22.1 7.7 25.0 21.2
2 23.3 10.8 25.9 22.9
3 24.7 11.1 27.5 21.6
4 26.3 12.3 32.6 25.6
5 28.0 14.0 32.6 31.4

Check window 2
1 24.4 6.5 21.1 30.4
2 26.0 7.3 22.9 25.0
3 29.4 9.1 25.8 29.2
4 32.6 9.7 30.8 24.1

Check window 3
1 21.3 9.5 22.2 23.1
2 23.5 13.3 26.7 25.0

modules multiple times on the same platform. The repeata-
bility is quantified with the Coefficient of Variation (C.V).
Table 1 lists the hardware events with the smallest C.V for
ARM Cortex A15 and PowerPC e300c3. These events are
the most robust, thus are considered as good candidates for
ConFirm.

In this experiment, we perform proof-of-concept ma-
licious modifications to a monitored subroutine for each
firmware. We then measure the event count deviations of
the malicious path from all the valid paths in the monitored
subroutines. Let CPtest(Ex) denotes the count of event Ex

from the execution of a path under test Ptest. Similarly,
CPref y

(Ex) denotes the event counts Ex from the execution
of a valid reference path Pref y . The deviation of Ptest from
Pref y on event Ex is presented as follows:

D(Ex)(Ptest, Pref y) =

∣∣∣∣∣CPtest
(Ex)− CPref y

(Ex)

CPref y
(Ex)

∣∣∣∣∣ (2)

Considering the system disturbances, it is required to

set a noise threshold N . In case D(Ex)(Ptest, Pref y) is
greater than N , ConFirm suggests a malicious modifica-
tion. Assume x events are monitored concurrently, where
1 ≤ x ≤ m. If for all these events D(Ex)(Ptest, Pref y) is
less than N , Ptest is matched to the valid path Pref y . If
no match is found in the checking procedure, a malicious
modification will be reported by ConFirm. The results of the
deviations D(Ex)(Ptest, Pref y) as well as the found thresh-
old N are presented below for two commercial embedded
systems2.

4.1.1 Case Study 1: ARM-based Firmware

We first test ConFirm with a commercial ARM-based
firmware. The embedded device is an all-in-one wireless
access point and access gateway designed for use by public
hot-spot providers and enterprises. The firmware contains a
VxWorks real-time operating system [37].

2. We do not include the names of the target devices due to a
nondisclosure agreement.
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In this experiment a Denial of Service (DoS) attack is
performed [38]. The attack targets the task scheduling mod-
ule of the firmware. Specifically, we add a function hook to
the checkTaskSwitch subroutine to modify the normal control-
flow of the task scheduling algorithm. When a task with a
specific ID is running it will occupy the processor without
being switched out, thus will impact the availability of other
tasks.

The modified firmware is evaluated and tested with
ConFirm on the Samsung Exynos Arndale board. The boot-
loader used on the platform is U-Boot, a multi-platform,
open-source, universal bootloader with comprehensive sup-
port for loading and managing boot images [39]. Owing to
their repeatability as shown in Table 1, we choose 4 events
to monitor: instruction architecturally executed (I), branch
instruction executed (B), load instruction speculatively exe-
cuted (L) and store instruction speculatively executed (S).
The event RETURN instruction speculatively executed is
not monitored since it does not occur in the monitored
subroutine.

There are seven valid paths in the original check-
TaskSwitch subroutine, named as Pref 1 to Pref 7. At run-
time the HPC-based signature will be compared with a sub-
set of the valid signatures (those included in the randomly
selected check window) to check if a match is found. The
results are shown in Table 2 (a) for 3 randomly selected
check windows.

The minimum deviation D(Ex) for a malicious path
Ptest to be detected is 8.7% in check window 3 (among
the events whose occurrences have changed). In this case,
the monitored LOAD event defines the minimum noise
detection threshold N . For example, a detection threshold
of 5% is adequate to identify the malicious modifications
in every chosen check window. Since there is no match
between the tested malicious path and any valid path, the
test case indicates a successful detection.

The results of similar experiments on another two ARM-
based firmwares are presented in Table 2 (b) and (c).

4.1.2 Case Study 2: PowerPC-based Firmware
This firmware runs on a PowerPC-based microprocessor.
The embedded system in this case study protects the
power grid by tripping and reclosing distribution power
lines. Specifically, the controller causes a recloser (i.e. cir-
cuit breaker) to trip and reclose in case of faults (e.g.
short-circuits overcurrents) [40]. In addition, the controller
provides information related to restoration operations and
functions able to locate the faulted phases, determine the
status of a device, check tripping counters, etc.

The recloser controller firmware is modified to imple-
ment a Man-in-the-Middle (MitM) attack that sniffs Ethernet
packets [41]. Specifically, the attack targets the Ethernet
packet receiving subroutine, named tfEtherRecv, in order
to capture the packets of data flowing across the Ethernet
network. The modification intercepts the control-flow in the
subroutine and copies the received packets to a specific
memory location. As a result, an attacker can retrieve the
critical information in the received Ethernet packets.

The detection capability of ConFirm on this PowerPC-
based firmware is evaluated on the Freescale MPC8308RDB
platform with U-Boot as the bootloader. In similar fashion

as in case study 1, we select the events with the smallest
C.Vs according to Table 1. Because the MPC8308RDB plat-
form has only 4 counters, we select 4 events similar to the
ARM-based platform: completed instruction (I), branch (B)
instruction completed, load micro-ops completed (L) and
store micro-ops completed (S).

The HPC-based signature of the malicious path exhibits
large deviations when compared with the signatures of the
five valid paths in tfEtherRecv. The generated signature is
compared with the valid signatures included in the checking
window to validate any match. The results are presented in
Table 2 (d) for 3 randomly chosen check windows.

The smallest deviation D(Ex) in this scenario is equal
to 4.2% due to the LOAD event counts of check window
1. Selecting the appropriate threshold N , for instance 4%,
ConFirm differentiates between valid and malicious paths
in order to detect the packet sniffing.

Table 2 (e) and (f) show the results of another two
firmwares evaluated on the PowerPC-based platform.

4.2 Performance and Storage Overhead

Here we evaluate the performance overhead on the moni-
tored firmware when ConFirm is enabled. The experiment
is performed on the presented firmwares and evaluated on
the ARM- and PowerPC-based platforms. The runtime per-
formance overhead is mainly due to the execution of extra
instructions at each checkpoint: transfer control instructions
in the trampoline, HPC handler instructions that read the
counters, and ConFirm core instructions that compare the
HPC read values with known references. Therefore, the
performance overhead tightly depends on the frequency of
checks, i.e. the size of a check window.

Figure 6 shows the execution time overhead on the
monitored firmwares when different check window sizes
are applied. For instance, a check window size of 500
instructions leads to an average execution time overhead of
8.48% on the ARM Cortex-A15 platform and 5.62% on the
PowerPC e300c3 platform. For the test cases presented in
Section 4.1, the performance overhead for the scenario that
includes all the subroutine paths is 14.2% and 7.3% for the
ARM and PowerPC case respectively.

The storage overhead of ConFirm is mainly for storing
the ConFirm components instructions and trampolines. The
requirement for storing the known valid HPC-based signa-
tures can be fine-tuned according to users’ requirements on
intrusiveness and security benefits.

Assume an HPC vector for a valid path in a check win-
dow contains the counts of 5 hardware events. Also suppose
that 2 bytes are used to store each counted number (i.e. up
to 65536 event counts - large enough for the occurrences
of any event within a typical check window). In this case,
the storage for the signature of a valid path is 10 bytes.
If 10 check windows are applied and there are 10 valid
paths in each window, then the required storage is 1 KB.
The storage size requirement for ConFirm instructions and
the trampolines is less than 10 KB. Consequently, the total
storage size requirement in this example is around 10 KB. In
the scenario where the firmware image size is 1MB then the
storage overhead is translated to 1% of the firmware code
size.



IEEE TRANSACTIONS ON MULTI-SCALE COMPUTING SYSTEMS, VOL. X, NO. X, SEPTEMBER 2015 8

15%

20%

25%

E
x
e

cu
ti

o
n

 t
im

e
 o

v
e

rh
e

a
d

ARM Cortex A15 PowerPC e300c3

0%

5%

10%

0 500 1000 1500 2000 2500 3000 3500

E
x
e

cu
ti

o
n

 t
im

e
 o

v
e

rh
e

a
d

Size of a check window (# of instructions)

Fig. 6: The execution time overhead when ConFirm is en-
abled with different sizes of check windows in terms of
number of total instructions.

5 DETECTION WITH SUPPORT VECTOR MACHINE-
BASED MACHINE LEARNING

5.1 Limitation of Comparison-based Check

The comparison-based HPC signature matching exhibits
better performance and accuracy for firmware subroutines
that have simple control-flows. However, some firmware
may have more complex control-flow and the monitoring
subroutines could have many different computational paths,
depending on the given inputs and current system state.
Consequently, there is a large number of possible valid
HPC signatures associated with such monitored subrou-
tines. With the comparison-based matching, all the valid
signatures need to be pre-stored in the ROM which signif-
icantly increases the storage usage. Moreover, comparing a
runtime HPC value with all the stored signatures leads to
high performance overhead which may not be acceptable in
embedded systems. For example, some subroutines of the
two discussed firmwares have more than 50 paths, which
means there are more than 50 valid signatures. Therefore,
each subroutine requires more than 500 bytes storage and
50 comparisons (worst case scenario) for each check. Storing
and matching a subset of the complete set of signatures
can reduce the storage and performance overhead but may
result in false positives (a valid runtime signature may not
be matched).

The problem becomes more complicated when the com-
putational paths include loops with a dynamic number of
iterations; the number of valid HPC signatures is enormous.
An example is shown in Figure 7. The monitored subroutine
is the Checksum routine for Internet Protocol from the same
ARM-based firmware mentioned in Section 4.1.1. There is
a loop in the subroutine calculating the checksum of IP
packets, and the number of iterations is determined by the
length of the input message. Figure 7 presents the occur-
rences of the four monitored hardware events INSTRUC-
TION, BRANCH, LOAD and STORE in 100 executions of
the subroutine when different input messages are applied.
From the result, we observe that the occurrences of the
monitored events are very dissimilar among executions with
different inputs. Storing all the possible HPC signatures in
the ROM and performing one-to-one comparison with a
runtime signature would be infeasible.
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Fig. 7: The occurrences of four monitored hardware events
INSTRUCTION (a), BRANCH (b), LOAD (c) and STORE (d)
in 100 executions of the same Checksum routine for Internet
Protocol of the ARM-based firmware which includes a loop
in its computational path. A large variation can be observed
among different executions when different input arguments
are applied.

5.2 Modeling and Classification using One-Class Sup-
port Vector Machine

Although the HPC-based signature has large variation for
some subroutines, it can be observed that there still exists
relatively strong relation among the occurrences of different
hardware events. One example is shown in Figure 8. A 3-
D dot plot is created with the same HPC data as shown in
Figure 7. Each blue dot in Figure 8 denotes an execution
of the Checksum routine for Internet Protocol subroutine, and
the X, Y and Z axes represent the occurrences of events
BRANCH, LOAD and INSTRUCTION, respectively. We can
observe that the dots of the monitored subroutine are not
distributed randomly, instead they gather as a cluster in a
certain manner. On the other hand, we modify the original
function of this subroutine to simulate a malicious attack
that can bypass the checksum. We then execute the mali-
cious subroutine for 100 times and collect the same set of
HPC values. The data is plot as red dots in Figure 8 in
the same way as mentioned above. Similarly, the dots of
the malicious subroutine executions also gather as a cluster.
The two clusters are distinctly separated as shown in the 3-
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Fig. 8: The dots of normal execution (blue) and malicious
executions (red) form two separate clusters in a 3-D plot,
giving the possibility to build a model of the normal cluster
and rule out all the abnormal data. The X, Y and Z axes
in the plot represent the occurrences of events BRANCH,
LOAD and INSTRUCTION, respectively.

D plot. Therefore, the relations among different monitored
HPCs can be used to differentiate normal and abnormal
control-flows.

In this work, we use machine learning techniques to
automatically extract the relations among different HPCs
and build the HPC-based model of the firmware monitored
subroutines. This can reduce the number of HPC signatures
generated and stored at each platform for the runtime
comparison without compromising the detection accuracy.
Because it is infeasible to build modules based on the HPC
measurements of each potential malicious modification, we
use unsupervised one-class machine learning techniques for
model building. A one-class machine learning technique is
useful in anomaly-based detection because the classifier is
trained solely with HPC measurements taken from clean
executions. It then classifies test data as similar to or dif-
ferent from the training set. Specifically, we measure the
monitored HPCs during the execution of a subroutine and
model the characteristics with the One-Class Support Vector
Machine (OC-SVM) classifier. SVM can create a non-linear
decision boundary by projecting the data through a non-
linear function to a space with a higher dimension [42].
More specifically, the data points that cannot be linearly
separated in the original space are ”mapped” to another
space, so called ”feature space”. In that space, the data
points can be separated between classes by a straight hy-
perplane. When mapped back to the original space, that
hyperplane would have the form of a non-linear curve.
The main component of the SVM classifier is the kernel
function [43]. A kernel function is an algorithm for pattern
analysis which can find and study the relations in the given
dataset and compute similarity of input data points. In our
experiment, we use the non-linear Radial Basis Function
(RBF) kernel [44].

The OC-SVM based detection consists of three steps:
feature selection, offline training and online classification.
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Fig. 9: The FPR and FNR of the OC-SVM classification
when different ν values are applied. Subroutine 1-3 are
from the ARM-based firmwares and subroutine 4-6 are from
the PowePC-based firmwares. The OC-SVM of Libsvm can
perform an accurate classification on each subroutine when
ν is set properly.

During the feature selection, a subset of variables is chosen
for model construction. In our technique, the features are
the types of hardware events that are monitored during
the execution of the firmware. The selection of monitored
hardware events are similar to what described in Section
3.4. We choose the events whose occurrences are more
repeatable from one execution to another, and more robust
against system disturbances. In the offline training phase,
the OC-SVM is trained with the data points collected from
the executions of the original monitored firmware subrou-
tines to automatically build a ”golden” model with the
selected features. In the online classification phase, the data
points collected at runtime are examined by the trained OC-
SVM to determine if they are fitted into the built model.
Any data point that is not fitted into the golden model is
consider as an anomaly, indicating a malicious execution of
the monitored subroutine.

5.3 Detection Capability with OC-SVM

To evaluate the detection capability of the proposed tech-
nique, we run the experiments with the same firmwares
mentioned in Section 4.1. We use Libsvm [45], an integrated
software for support vector classification, regression and
distribution estimation, in order to automatically build the
model and perform the one-class classification.

For each monitored subroutine, the OC-SVM is first
trained with the data collected from the HPC measurements
of normal executions to build the model. The subroutines
are executed multiple times with different inputs to gen-
erate a sufficient number of data points for modelling.
The features selected for building models are instructions
executed, branch instructions executed, load instructions
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executed and store instructions executed, for both ARM-
and PowerPC-based firmwares. One of the important steps
in the training phase is tuning a set of parameters that is
used in OC-SVM. Such parameters have significant impacts
on the accuracy of the developed models. For example,
the γ parameter defines how far the influence of a single
training example reaches, and the ν parameter basically sets
an upper bound on the fraction of outliers.

Following the training, we generate two sets of test
data points to evaluate the accuracy of the classification of
the model built by the OC-SVM. The first set of test data
points are generated from the executions of the original
subroutines. We applied this set of data points to the OC-
SVM model to determine the False Positive Rate (FPR) of the
classification. The other set of data points is generated from
the executions of the modified subroutines. We perform
malicious modifications to the monitored subroutines to
simulate different types of attacks. The malicious data points
are tested against the built model to determine the False
Negative Rate (FNR). The experimental results of the moni-
tored subroutines from each of the six ARM- and PowerPC-
based firmwares are shown in Figure 9. For each monitored
subroutine, the FPR and FNR are measured when different
ν values (0.01 - 0.5) are applied. From the results, we can
see that when a proper ν value is chosen, the OC-SVM of
Libsvm can perform a very accurate classification with very
low FPR and FNR on each subroutine. For example, the
classification for subroutine 1 (Checksum routine for Internet
Protocol) from the ARM-based firmware has both FPR and
FNR lower than 5% when ν is set to 0.08.

6 REMOTE-BASED DETECTION WITH MACHINE
LEARNING

Using OC-SVM significantly reduces the storage overhead
by replacing the large amount of HPC signatures with
much smaller models. However, the impact on system
performance of running the OC-SVM should be further
minimized.

The online phase of the HPC-based detection takes two
steps: measuring the occurrences of the monitored HPC
events, and performing the analysis on the measured data.
In the measurement step, detailed information is obtained
with minimal impact on system performance since the oc-
currences of the events are automatically counted. How-
ever, analyzing the measured data (the runtime one-class
classification on the HPC data for OC-SVM) still consumes
a considerable amount of computing resources. This may
become an issue for some real-time platforms with very
limited computing capability.

Fortunately, for an HPC-based technique, the analysis is
not necessary to be run locally in the monitored system.
The analysis steps of the HPC-based checking does not
depend on the state of the monitored system after HPC
data are collected. Therefore, an effective way to reduce the
consumption of local resources is to outsource all the com-
plex analysis to a remote machine which has much higher
computing capabilities. Figure 10 shows the structure we
propose that provides ”centralized” analysis. More specif-
ically, the selected HPC values that are collected locally
during the executions of the monitored subroutines of the
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Fig. 10: The structure of remote-based detection. The HPC
values measured on a local monitored platform are sent
through secure network to a remote machine which has
much more computing resources. Both the performance and
storage overhead can be significantly reduced on the local
monitored platform.

firmware are sent through the network to a remote machine
for further analysis. The OC-SVM runs on the remote ma-
chine to perform the classification. The OC-SVM models are
pre-generated offline and stored in a database connected to
the remote machine. If any anomaly is observed after the
classification, the remote machine will send an alert back to
the local systems through the network.

Besides reducing performance overhead, the proposed
remote-based detection can further minimize the storage
overhead on local platforms. Assume in a smart grid there
are N nodes running critical software that needs to be
monitored. Each node runs the same software modules with
the same hardware configuration (e.g., power meters in the
customer premise). With the HPC-based detection enabled,
N local databases are required for the whole smart grid
while each of them has to contain the complete set of either
HPC signatures or SVM models. Each database is actually a
duplicate of another. With remote-based technique, only one
database is required for the N monitored systems that run
the same software modules. There is no extra storage needed
at each monitored platform and the storage overhead of the
whole system is reduced by N times.

6.1 Performance and Storage Overhead with Remote-
based Detection

We evaluate the performance and storage overhead
with remote-based detection enabled on both the ARM-
based Samsung Exynos Arndale and the PowePC-based
MPC8308RDB platforms with the same configurations as
described in Section 4. In our implementation, the HPC
data are sent from the embedded platforms to the remote
machine through a network cable with the Trivial File
Transfer Protocol (TFTP) by leveraging the TFTP modules
already implemented in U-Boot. The remote machine has
the 2.53GHz Intel Core2 Duo CPU running 32-bit Ubuntu
12.04 with 4GB RAM. The performance and storage over-
head on the local and remote platforms are summarized in
Table 3 (a) and (b), respectively.

On the local platform side, with the OC-SVM and
remote-based detection enabled, the perform overheads on
the Samsung Exynos Arndale and the MPC8308RDB plat-
forms are 5.1% and 4.7%, respectively. As mentioned before,
there is no extra storage needed for signatures or models
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TABLE 3: The performance and storage overhead on the
local (a) and remote (b) platforms

(a)

Arndale MPC8308RDB
Performance overhead 5.1% 4.7%
Storage for signatures 0 0
Network bandwidth 1 KB/sec 1 KB/sec

(b)

Execution time for training ∼2 ms per subroutine
Execution time for classification ∼5 ms per subroutine

Storage for models ∼10 KB per model
Network bandwidth required 1 KB/sec per connection

on local platforms. Assume 100 subroutines are checked
every 1 second. For each check, 5 HPC values are measured
and sent. Because each HPC value needs 2 bytes, there is
a network bandwidth requirement of 1 KB/sec for each
monitored platform which is acceptable for most embedded
systems nowadays.

On the remote platform side, the training phase takes
about 2 ms for building a model of a subroutine while
the online classification takes about 5 ms with platform
configuration mentioned above. Regarding the storage, a
model of a subroutine occupies about 10 KB. The network
bandwidth requirement on the remote side depends on the
number of local platforms that send the data at the same
time. Each connection needs a bandwidth of 1 KB/sec.

7 RELATED WORK

Zimmer et al. present three software-based mechanisms for
time-based intrusion detection [46]. The applications run-
ning on an embedded system are validated by the bounds
of execution time of selected code sections. VIPER is a
software-only attestation method developed to verify the
integrity of peripherals firmware [47]. It is executed on the
host machine assuming that the OS on the host CPU is
secure and trustworthy during verification. [48] introduces a
mechanism to identify abnormal system-wide behaviors by
measuring the number of memory accesses to a particular
memory region during a time interval. This technique re-
quires modifications to hardware, and has significant noise
when the memory usage is caused by network activities
or user interactions. OCFMM [49] detects malicious mod-
ifications by enforcing control flow integrity in embedded
real-time systems. The control flow graph (CFG) of the
monitored firmware is loaded into the isolated memory and
the check is performed with the granularity of each basic
block. This technique also requires hardware modifications
and has high performance and storage overheads. NAVIS is
an anomaly-detection system that checks memory accesses
performed by the Network Interface Card (NIC) on-chip
processor [50]. Besides the memory-only profiling of NIC,
NAVIS runs inside of the OS and therefore assumes that
the OS is trusted. Hu et al. have proposed a hardware
monitor based attack detection framework in Network Pro-
cessors (NP) to protect the system from data plane attack
by checking the instruction flow of the firmware [51], [52].

Other detection frameworks often require modules that are
not present in many embedded designs such as System
Management Mode (SMM) [53].

Schellekens et al. have studied the integration of a trusted
module into a system-on-chip design that lacks embedded
reprogrammable non-volatile memory [54]. Doing that, they
introduce a cryptographic protocol to achieve an authenti-
cated channel between the trusted module and the external
non-volatile memory. It has also been demonstrated how
to leverage flash microcontroller units for remote kernel
attestation in order to audit application firmware integrity
[55]. Furthermore, a study presented a signature verification
method in order prevent malicious firmware from being
installed on a mouse [13]. The signature-based verification
code requires to be inserted into the bootloader. However,
the code requires more space than is currently available in
the mouse bootloader, highlighting the nature of embedded
systems in terms of power, memory, area, timing and other
resources constrains.

A static analysis technique compares a suspected-altered
PLC firmware to a known good firmware [56]. Static anal-
ysis, however, can only detect modifications based on the
firmware size and code modules differences. Moreover,
Morais et al. have developed a verification method which
hashes the residing ROM code and compares it with the
expected hash value. This technique, however, presents
overhead, especially if the main system microcontroller unit
does not have a multiplier [57]. Similar to the hash-based
mechanism, guards (e.g. checksum functions, obfuscation
functions etc.) embedded into the binary program introduce
significant resource cost to the embedded system [58].

Epitomizing the techniques on firmware verification,
mostly rely on some form of checksum algorithms, such as
Cyclic Redundancy Checks (CRC) and cryptographic hash
functions. However, Checksum algorithms can be circum-
vented by reverse engineering their calculation modules
[5], [10], [59]. Other verification mechanisms often rely on
network connectivity (digital signatures) [60], or even re-
quire extra hardware [61]. In comparison with the currently
developed detection methods, ConFirm, does not require
extra hardware neither has any real-time requirements.

HPCs have been previously studied for security pur-
poses and especially for malware detection and identifi-
cation. Demme et al. have demonstrated how to detect
Android malware and Linux rootkits by collecting data
of microarchitectural events [62]. NumChecker is a Virtual
Machine Monitor (VMM) based framework that can detect
rootkits which subvert the control-flow of OS kernels [63].
Using the branch trace store mechanism in HPCs, CFIMon
presents how to verify control-flow integrity by detecting
attacks such code-reuse attacks [64]. In addition, Ozsoy et al.
have developed an always-on hardware malware detection
engine by measuring low-level hardware events occurrences
[65]. BRAIN combines the occurrences of low-level hard-
ware events and network statistics to detect Distributed
Denial of Servic (DDoS) attacks [66]. Moreover, a prelimi-
nary work on HPC-based malicious firmware detection is
presented in [67].
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8 CONCLUSIONS AND FUTURE WORK

In this work, we propose ConFirm, a low-cost technique
to detect malicious modifications in the firmware of em-
bedded systems by measuring the number of low-level
hardware events that occur during execution. In order to
count these events, ConFirm leverages the HPCs which
readily exist in many embedded processors. We propose a
comparison-based technique to detect malicious modifica-
tions in firmwares with simple control-flows. For firmwares
with more complex control-flows, we use machine learning
techniques to automatically extract the relations among dif-
ferent hardware events. This method significantly reduces
the number of pre-stored valid HPC signatures without
compromising the detection accuracy. Finally, we reduce the
consumption of local resources by implementing a remote-
based detection mechanism. We evaluate the detection ca-
pability and performance overhead of the proposed tech-
nique on various types of firmware running on ARM- and
PowerPC-based embedded processors. Experimental results
demonstrate its practicality and effectiveness.
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